English Spanish
tcpdump -c 4000 -s 10000 -w dumpfile.bin
Now start <<tcpdump>>.
In the "secure" window, run the UNIX(R) command man:yes[1], which will stream the `y` character. After a while, stop this. Switch to the insecure window, and repeat. After a while, stop.
Now run <<code>> on the captured packets. You should see something like the following. The important thing to note is that the secure connection has 93% (6.7) of the expected value (7.18), and the "normal" connection has 29% (2.1) of the expected value.
% tcpdump -c 4000 -s 10000 -w ipsecdemo.bin
% uliscan ipsecdemo.bin
Uliscan 21 Dec 98
L=8 256 258560
Measuring file ipsecdemo.bin
Init done
Expected value for L=8 is 7.1836656
6.9396 --------------------------------------------------------
6.6177 -----------------------------------------------------
6.4100 ---------------------------------------------------
2.1101 -----------------
2.0838 -----------------
2.0983 -----------------
A comprehensive guide on running IPsec on FreeBSD is provided in link:{handbook}#ipsec[FreeBSD Handbook].
You can find the same code at https://web.archive.org/web/20031204230654/http://www.geocities.com:80/SiliconValley/Code/4704/uliscanc.txt[this link].
ULISCAN.c ---blocksize of 8
1 Oct 98
1 Dec 98
21 Dec 98 uliscan.c derived from ueli8.c
This version has // comments removed for Sun cc
This implements Ueli M Maurer's "Universal Statistical Test for Random
Bit Generators" using L=8
Accepts a filename on the command line; writes its results, with other
info, to stdout.
Handles input file exhaustion gracefully.
Ref: J. Cryptology v 5 no 2, 1992 pp 89-105
also on the web somewhere, which is where I found it.
-David Honig
ULISCAN filename
outputs to stdout
#define L 8
#define V (1<<L)
#define Q (10*V)
#define K (100 *Q)
#define MAXSAMP (Q + K)
#include <stdio.h>
#include <math.h>
int main(argc, argv)
int argc;
char **argv;
FILE *fptr;
int i,j;
int b, c;
int table[V];
double sum = 0.0;
int iproduct = 1;
int run;
extern double log(/* double x */);