The translation is temporarily closed for contributions due to maintenance, please come back later.

Translation

(itstool) path: sect1/para
English
FreeBSD's memory allocation code implements page coloring optimizations, which means that the memory allocation code will attempt to locate free pages that are contiguous from the point of view of the cache. For example, if page 16 of physical memory is assigned to page 0 of a process's virtual memory and the cache can hold 4 pages, the page coloring code will not assign page 20 of physical memory to page 1 of a process's virtual memory. It would, instead, assign page 21 of physical memory. The page coloring code attempts to avoid assigning page 20 because this maps over the same cache memory as page 16 and would result in non-optimal caching. This code adds a significant amount of complexity to the VM memory allocation subsystem as you can well imagine, but the result is well worth the effort. Page Coloring makes VM memory as deterministic as physical memory in regards to cache performance.
Context English Portuguese (Brazil) State
The free page determination algorithm is built upon a history of the use of memory pages. To acquire this history, the system takes advantage of a page-used bit feature that most hardware page tables have. O algoritmo de determinação de página livre é construído sobre um histórico do uso das páginas de memória. Para adquirir este histórico, o sistema tira proveito de um recurso de um bit usado pela página que a maioria das tabelas de página de hardware possui.
In any case, the page-used bit is cleared and at some later point the VM system comes across the page again and sees that the page-used bit has been set. This indicates that the page is still being actively used. If the bit is still clear it is an indication that the page is not being actively used. By testing this bit periodically, a use history (in the form of a counter) for the physical page is developed. When the VM system later needs to free up some pages, checking this history becomes the cornerstone of determining the best candidate page to reuse. Em qualquer caso, o bit usado na página é desmarcado e, em algum momento posterior, o sistema de VM encontra a página novamente e vê que o bit usado na página foi definido. Isso indica que a página ainda está sendo usada ativamente. Se o bit ainda estiver desmarcado, é uma indicação de que a página não está sendo usada ativamente. Ao testar este bit periodicamente, é desenvolvido um histórico de uso (na forma de um contador) para a página física. Quando, posteriormente, o sistema de VM precisar liberar algumas páginas, a verificação desse histórico se tornará a base da determinação da melhor página candidata a ser reutilizada.
What if the hardware has no page-used bit? E se o hardware não tiver o bit usado na página?
For those platforms that do not have this feature, the system actually emulates a page-used bit. It unmaps or protects a page, forcing a page fault if the page is accessed again. When the page fault is taken, the system simply marks the page as having been used and unprotects the page so that it may be used. While taking such page faults just to determine if a page is being used appears to be an expensive proposition, it is much less expensive than reusing the page for some other purpose only to find that a process needs it back and then have to go to disk. Para as plataformas que não possuem esse recurso, o sistema realmente emula um bit usado na página. Ele remove o mapeamento ou protege uma página, forçando uma falha de página se a página for acessada novamente. Quando a falha de página acontece, o sistema simplesmente marca a página como tendo sido usada e desprotege a página para que ela possa ser usada. Embora a tomada de tais falhas de página apenas para determinar se uma página está sendo usada pareça ser uma proposta cara, é muito menos dispendioso do que reutilizar a página para outra finalidade, apenas para descobrir que um processo precisa dela e depois ir para o disco .
FreeBSD makes use of several page queues to further refine the selection of pages to reuse as well as to determine when dirty pages must be flushed to their backing store. Since page tables are dynamic entities under FreeBSD, it costs virtually nothing to unmap a page from the address space of any processes using it. When a page candidate has been chosen based on the page-use counter, this is precisely what is done. The system must make a distinction between clean pages which can theoretically be freed up at any time, and dirty pages which must first be written to their backing store before being reusable. When a page candidate has been found it is moved to the inactive queue if it is dirty, or the cache queue if it is clean. A separate algorithm based on the dirty-to-clean page ratio determines when dirty pages in the inactive queue must be flushed to disk. Once this is accomplished, the flushed pages are moved from the inactive queue to the cache queue. At this point, pages in the cache queue can still be reactivated by a VM fault at relatively low cost. However, pages in the cache queue are considered to be <quote>immediately freeable</quote> and will be reused in an LRU (least-recently used) fashion when the system needs to allocate new memory. O FreeBSD faz uso de várias filas de páginas para refinar ainda mais a seleção de páginas para reutilização, bem como para determinar quando páginas inativas devem ser liberadas para o suporte ao armazenamento. Como as tabelas de páginas são entidades dinâmicas sob o FreeBSD, não custa virtualmente nada desmapear uma página do espaço de endereço de qualquer processo que a utilize. Quando uma página cadidata ser escolhida com base no contador de uso de página, isso é precisamente o que é feito. O sistema deve fazer uma distinção entre páginas limpas que teoricamente podem ser liberadas a qualquer momento, e páginas inativas que devem primeiro ser escritas em seu repositório de armazenamento antes de serem reutilizáveis. Quando uma página candidata for encontrada, ela será movida para a fila inativa, se estiver inativas, ou para a fila de cache, se estiver limpa. Um algoritmo separado baseado na proporção de páginas inativas para limpas determina quando páginas inativas na fila inativa devem ser liberadas para o disco. Depois que isso for feito, as páginas liberadas serão movidas da fila inativa para a fila de cache. Neste ponto, as páginas na fila de cache ainda podem ser reativadas por uma falha de VM a um custo relativamente baixo. No entanto, as páginas na fila de cache são consideradas <quote>imediatamente livres</quote> e serão reutilizadas em uma forma LRU (usada menos recentemente) quando o sistema precisar alocar nova memória.
It is important to note that the FreeBSD VM system attempts to separate clean and dirty pages for the express reason of avoiding unnecessary flushes of dirty pages (which eats I/O bandwidth), nor does it move pages between the various page queues gratuitously when the memory subsystem is not being stressed. This is why you will see some systems with very low cache queue counts and high active queue counts when doing a <command>systat -vm</command> command. As the VM system becomes more stressed, it makes a greater effort to maintain the various page queues at the levels determined to be the most effective. É importante notar que o sistema de VM do FreeBSD tenta separar páginas limpas e inativas pelo motivo expresso de evitar descargas desnecessárias de páginas inativas (que consomem largura de banda de I/O), nem move páginas entre as várias filas de páginas gratuitamente quando o subsistema de memória não está sendo enfatizado. É por isto que você verá alguns sistemas com contagens de fila de cache muito baixas e contagens alta de fila ativa ao executar um comando <command>systat -vm</command>. À medida que o sistema de VM se torna mais estressado, ele faz um esforço maior para manter as várias filas de páginas nos níveis determinados para serem mais eficazes.
An urban myth has circulated for years that Linux did a better job avoiding swapouts than FreeBSD, but this in fact is not true. What was actually occurring was that FreeBSD was proactively paging out unused pages in order to make room for more disk cache while Linux was keeping unused pages in core and leaving less memory available for cache and process pages. I do not know whether this is still true today. Uma lenda urbana circulou durante anos que o Linux fez um trabalho melhor evitando trocas do que o FreeBSD, mas isso de fato não é verdade. O que estava realmente ocorrendo era que o FreeBSD estava proativamente numerando páginas não usadas a fim de abrir espaço para mais cache de disco enquanto o Linux mantinha páginas não utilizadas no núcleo e deixando menos memória disponível para páginas de cache e processo. Eu não sei se isso ainda é verdade hoje.
Pre-Faulting and Zeroing Optimizations Otimizações de Pré-Falhas ou para Zerar
Taking a VM fault is not expensive if the underlying page is already in core and can simply be mapped into the process, but it can become expensive if you take a whole lot of them on a regular basis. A good example of this is running a program such as <citerefentry><refentrytitle>ls</refentrytitle><manvolnum>1</manvolnum></citerefentry> or <citerefentry><refentrytitle>ps</refentrytitle><manvolnum>1</manvolnum></citerefentry> over and over again. If the program binary is mapped into memory but not mapped into the page table, then all the pages that will be accessed by the program will have to be faulted in every time the program is run. This is unnecessary when the pages in question are already in the VM Cache, so FreeBSD will attempt to pre-populate a process's page tables with those pages that are already in the VM Cache. One thing that FreeBSD does not yet do is pre-copy-on-write certain pages on exec. For example, if you run the <citerefentry><refentrytitle>ls</refentrytitle><manvolnum>1</manvolnum></citerefentry> program while running <command>vmstat 1</command> you will notice that it always takes a certain number of page faults, even when you run it over and over again. These are zero-fill faults, not program code faults (which were pre-faulted in already). Pre-copying pages on exec or fork is an area that could use more study. Pegar uma falha de VM não é caro se a página subjacente já estiver no núcleo e puder simplesmente ser mapeada no processo, mas pode se tornar cara se você pegar muitas delas regularmente. Um bom exemplo disso é executar um programa como <citerefentry><refentrytitle>ls</refentrytitle><manvolnum>1</manvolnum></citerefentry> ou <citerefentry><refentrytitle>ps</refentrytitle><manvolnum>1</manvolnum></citerefentry> várias vezes. Se o programa binário é mapeado na memória, mas não mapeado na tabela de páginas, então todas as páginas que serão acessadas pelo programa irão estar com falha toda vez que o programa for executado. Isso é desnecessário quando as páginas em questão já estão no cache de VM, então o FreeBSD tentará preencher previamente as tabelas de páginas de um processo com as páginas que já estão no cache de VM. Uma coisa que o FreeBSD ainda não faz é pré-copiar-durante-escrita certas páginas no exec. Por exemplo, se você executar o programa <citerefentry><refentrytitle>ls</refentrytitle><manvolnum>1</manvolnum></citerefentry> ao executar o <command>vmstat 1</command>, notará que sempre pega um determinado número de falhas de página, mesmo quando você o executa várias vezes. Estas são falhas de preenchimento com zero, não falhas de código de programa (que já foram pré-falhas). A pré-cópia de páginas em exec ou fork é uma área que poderia se utilizar de mais estudos.
A large percentage of page faults that occur are zero-fill faults. You can usually see this by observing the <command>vmstat -s</command> output. These occur when a process accesses pages in its BSS area. The BSS area is expected to be initially zero but the VM system does not bother to allocate any memory at all until the process actually accesses it. When a fault occurs the VM system must not only allocate a new page, it must zero it as well. To optimize the zeroing operation the VM system has the ability to pre-zero pages and mark them as such, and to request pre-zeroed pages when zero-fill faults occur. The pre-zeroing occurs whenever the CPU is idle but the number of pages the system pre-zeros is limited in order to avoid blowing away the memory caches. This is an excellent example of adding complexity to the VM system in order to optimize the critical path. Uma grande porcentagem de falhas de página que ocorrem são falhas de preenchimento com zero. Geralmente, você pode ver isso observando a saída de <command>vmstat -s</command>. Estas falhas ocorrem quando um processo acessa páginas em sua área BSS. Espera-se que a área BSS seja inicialmente zero, mas o sistema de VM não se preocupa em alocar memória alguma até que o processo realmente a acesse. Quando ocorre uma falha, o sistema de VM deve alocar não apenas uma nova página, mas deve zerá-la também. Para otimizar a operação de zeramento, o sistema de VM tem a capacidade de pré-zerar páginas e marcá-las como tal, e solicitar páginas pré-zeradas quando ocorrem falhas de preenchimento com zero. O pré-zeramento ocorre sempre que a CPU está inativa, mas o número de páginas que o sistema pre-zeros é limitado, a fim de evitar que os caches de memória sejam dissipados. Este é um excelente exemplo de adição de complexidade ao sistema de VM para otimizar o caminho crítico.
Page Table Optimizations Otimizações da Tabela de Páginas
The page table optimizations make up the most contentious part of the FreeBSD VM design and they have shown some strain with the advent of serious use of <function>mmap()</function>. I think this is actually a feature of most BSDs though I am not sure when it was first introduced. There are two major optimizations. The first is that hardware page tables do not contain persistent state but instead can be thrown away at any time with only a minor amount of management overhead. The second is that every active page table entry in the system has a governing <literal>pv_entry</literal> structure which is tied into the <literal>vm_page</literal> structure. FreeBSD can simply iterate through those mappings that are known to exist while Linux must check all page tables that <emphasis>might</emphasis> contain a specific mapping to see if it does, which can achieve O(n^2) overhead in certain situations. It is because of this that FreeBSD tends to make better choices on which pages to reuse or swap when memory is stressed, giving it better performance under load. However, FreeBSD requires kernel tuning to accommodate large-shared-address-space situations such as those that can occur in a news system because it may run out of <literal>pv_entry</literal> structures. As otimizações da tabela de páginas constituem a parte mais contenciosa do design de VM do FreeBSD e mostraram alguma tensão com o advento do uso sério de <function>mmap()</function>. Eu acho que isso é realmente uma característica da maioria dos BSDs, embora eu não tenha certeza de quando foi introduzido pela primeira vez. Existem duas otimizações principais. A primeira é que as tabelas de páginas de hardware não contêm estado persistente, mas podem ser descartadas a qualquer momento com apenas uma pequena quantidade de sobrecarga de gerenciamento. A segunda é que cada entrada ativa da tabela de páginas no sistema tem uma estrutura governante <literal>pv_entry</literal> que é amarrada na estrutura <literal>vm_page</literal>. O FreeBSD pode simplesmente iterar através desses mapeamentos que são conhecidos, enquanto o Linux deve verificar todas as tabelas de páginas que <emphasis>possam</emphasis> conter um mapeamento específico para ver se ele o faz, o que pode alcançar O(n^2) situações. É por isso que o FreeBSD tende a fazer melhores escolhas em quais páginas reutilizar ou trocar quando a memória é estressada, dando-lhe melhor desempenho em sobrecarga. No entanto, o FreeBSD requer o ajuste do kernel para acomodar situações de grandes espaços de endereços compartilhados, como aquelas que podem ocorrer em um sistema de notícias, porque ele pode rodar sem estruturas <literal>pv_entry</literal>.
Both Linux and FreeBSD need work in this area. FreeBSD is trying to maximize the advantage of a potentially sparse active-mapping model (not all processes need to map all pages of a shared library, for example), whereas Linux is trying to simplify its algorithms. FreeBSD generally has the performance advantage here at the cost of wasting a little extra memory, but FreeBSD breaks down in the case where a large file is massively shared across hundreds of processes. Linux, on the other hand, breaks down in the case where many processes are sparsely-mapping the same shared library and also runs non-optimally when trying to determine whether a page can be reused or not. Tanto o Linux quanto o FreeBSD precisam funcionar nesta área. O FreeBSD está tentando maximizar a vantagem de um modelo de mapeamento ativo potencialmente esparso (nem todos os processos precisam mapear todas as páginas de uma biblioteca compartilhada, por exemplo), enquanto o Linux está tentando simplificar seus algoritmos. O FreeBSD geralmente tem a vantagem de desempenho aqui, ao custo de desperdiçar um pouco de memória extra, mas o FreeBSD quebra no caso em que um arquivo grande é massivamente compartilhado em centenas de processos. O Linux, por outro lado, se quebra no caso em que muitos processos mapeiam esparsamente a mesma biblioteca compartilhada e também são executados de maneira não ideal ao tentar determinar se uma página pode ser reutilizada ou não.
Page Coloring Page Coloring
We will end with the page coloring optimizations. Page coloring is a performance optimization designed to ensure that accesses to contiguous pages in virtual memory make the best use of the processor cache. In ancient times (i.e. 10+ years ago) processor caches tended to map virtual memory rather than physical memory. This led to a huge number of problems including having to clear the cache on every context switch in some cases, and problems with data aliasing in the cache. Modern processor caches map physical memory precisely to solve those problems. This means that two side-by-side pages in a processes address space may not correspond to two side-by-side pages in the cache. In fact, if you are not careful side-by-side pages in virtual memory could wind up using the same page in the processor cache—leading to cacheable data being thrown away prematurely and reducing CPU performance. This is true even with multi-way set-associative caches (though the effect is mitigated somewhat). Terminaremos com as otimizações de page coloring. Page coloring é uma otimização de desempenho projetada para garantir que acessos a páginas contíguas na memória virtual façam o melhor uso do cache do processador. Nos tempos antigos (isto é, há mais de 10 anos), os caches de processador tendiam a mapear a memória virtual em vez da memória física. Isso levou a um grande número de problemas, incluindo a necessidade de limpar o cache em cada troca de contexto em alguns casos e problemas com o alias de dados no cache. Caches de processador modernos mapeiam a memória física com precisão para resolver esses problemas. Isto significa que duas páginas lado a lado em um espaço de endereço de processos podem não corresponder a duas páginas lado a lado no cache. Na verdade, se você não for cuidadoso, as páginas lado a lado na memória virtual podem acabar usando a mesma página no cache do processador - conduzindo para que dados em cache sejam descartados prematuramente e reduzindo o desempenho da CPU. Isto é verdade mesmo com caches auto associativos de múltiplas vias (embora o efeito seja um pouco mitigado).
FreeBSD's memory allocation code implements page coloring optimizations, which means that the memory allocation code will attempt to locate free pages that are contiguous from the point of view of the cache. For example, if page 16 of physical memory is assigned to page 0 of a process's virtual memory and the cache can hold 4 pages, the page coloring code will not assign page 20 of physical memory to page 1 of a process's virtual memory. It would, instead, assign page 21 of physical memory. The page coloring code attempts to avoid assigning page 20 because this maps over the same cache memory as page 16 and would result in non-optimal caching. This code adds a significant amount of complexity to the VM memory allocation subsystem as you can well imagine, but the result is well worth the effort. Page Coloring makes VM memory as deterministic as physical memory in regards to cache performance. O código de alocação de memória do FreeBSD implementa otimizações de page coloring, o que significa que o código de alocação de memória tentará localizar páginas livres contíguas do ponto de vista do cache. Por exemplo, se a página 16 da memória física for atribuída à página 0 da memória virtual de um processo e o cache puder conter 4 páginas, o código de page coloring não atribuirá a página 20 da memória física a página 1 da memória virtual de um processo. Em vez disso, atribui a página 21 da memória física. O código de page coloring tenta evitar assimilar a página 20, porque ela é mapeada sobre a mesma memória cache da página 16 e resultaria em um armazenamento não otimizado. Este código adiciona uma quantidade significativa de complexidade ao subsistema de alocação de memória de VM, como você pode imaginar, mas o resultado vale o esforço. Page coloring torna a memória de VM tão determinante quanto a memória física em relação ao desempenho do cache.
Conclusion Conclusão
Virtual memory in modern operating systems must address a number of different issues efficiently and for many different usage patterns. The modular and algorithmic approach that BSD has historically taken allows us to study and understand the current implementation as well as relatively cleanly replace large sections of the code. There have been a number of improvements to the FreeBSD VM system in the last several years, and work is ongoing. A memória virtual em sistemas operacionais modernos deve abordar vários problemas diferentes de maneira eficiente e para muitos padrões de uso diferentes. A abordagem modular e algorítmica que o BSD historicamente teve nos permite estudar e entender a implementação atual, bem como substituir de forma relativamente limpa grandes seções do código. Houve uma série de melhorias no sistema de VM do FreeBSD nos últimos anos e o trabalho está em andamento.
Bonus QA session by Allen Briggs <email>briggs@ninthwonder.com</email> Sessão bônus de QA por Allen Briggs <email>briggs@ninthwonder.com</email>
What is <quote>the interleaving algorithm</quote> that you refer to in your listing of the ills of the FreeBSD 3.X swap arrangements? O que é <quote>o algoritmo de intercalação</quote> ao qual você se refere em sua listagem dos males dos arranjos de swap do FreeBSD 3.X?
FreeBSD uses a fixed swap interleave which defaults to 4. This means that FreeBSD reserves space for four swap areas even if you only have one, two, or three. Since swap is interleaved the linear address space representing the <quote>four swap areas</quote> will be fragmented if you do not actually have four swap areas. For example, if you have two swap areas A and B FreeBSD's address space representation for that swap area will be interleaved in blocks of 16 pages: O FreeBSD usa um intercalador de swap fixo, cujo padrão é 4. Isso significa que o FreeBSD reserva espaço para quatro áreas de swap, mesmo se você tiver apenas uma, duas ou três. Como a swap é intercalada, o espaço de endereçamento linear representando as <quote>quatro áreas de troca</quote> estará fragmentado se você não tiver quatro áreas de troca. Por exemplo, se você tiver duas áreas de swap, A e B, a representação do espaço de endereçamento do FreeBSD para esta área de troca será intercalada em blocos de 16 páginas:
A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D
FreeBSD 3.X uses a <quote>sequential list of free regions</quote> approach to accounting for the free swap areas. The idea is that large blocks of free linear space can be represented with a single list node (<filename>kern/subr_rlist.c</filename>). But due to the fragmentation the sequential list winds up being insanely fragmented. In the above example, completely unused swap will have A and B shown as <quote>free</quote> and C and D shown as <quote>all allocated</quote>. Each A-B sequence requires a list node to account for because C and D are holes, so the list node cannot be combined with the next A-B sequence. O FreeBSD 3.X usa uma abordagem de <quote>lista sequencial de regiões livres</quote> para contabilizar as áreas de swap livres. A ideia é que grandes blocos de espaço linear livre possam ser representados com um único nó da lista (<filename>kern/subr_rlist.c</filename>). Mas devido a fragmentação, a lista sequencial acaba sendo insanamente fragmentada. No exemplo acima, a swap completamente sem uso terá A e B mostrados como <quote>livres</quote> e C e D mostrados como <quote>todos alocados</quote>. Cada sequência A-B requer um nó da lista para considerar porque C e D são buracos, portanto, o nó de lista não pode ser combinado com a próxima sequência A-B.
Why do we interleave our swap space instead of just tack swap areas onto the end and do something fancier? It is a whole lot easier to allocate linear swaths of an address space and have the result automatically be interleaved across multiple disks than it is to try to put that sophistication elsewhere. Por que nós intercalamos nosso espaço de swap em vez de apenas colocar as áreas de swap no final e fazer algo mais sofisticado? Porque é muito mais fácil alocar trechos lineares de um espaço de endereçamento e ter o resultado automaticamente intercalado em vários discos do que tentar colocar esta sofisticação em outro lugar.
The fragmentation causes other problems. Being a linear list under 3.X, and having such a huge amount of inherent fragmentation, allocating and freeing swap winds up being an O(N) algorithm instead of an O(1) algorithm. Combined with other factors (heavy swapping) and you start getting into O(N^2) and O(N^3) levels of overhead, which is bad. The 3.X system may also need to allocate KVM during a swap operation to create a new list node which can lead to a deadlock if the system is trying to pageout pages in a low-memory situation. A fragmentação causa outros problemas. Sendo uma lista linear sob 3.X, e tendo uma enorme quantidade de fragmentação inerente, alocando e liberando swap leva a ser um algoritmo O(N) ao invés de um algoritmo O(1). Combinado com outros fatores (troca pesada) e você começa a entrar em níveis de sobrecarga O(N^2) e O(N^3), o que é ruim. O sistema 3.X também pode precisar alocar o KVM durante uma operação de troca para criar um novo nó da lista que pode levar a um impasse se o sistema estiver tentando fazer uma liberação de página em uma situação de pouca memória.
Under 4.X we do not use a sequential list. Instead we use a radix tree and bitmaps of swap blocks rather than ranged list nodes. We take the hit of preallocating all the bitmaps required for the entire swap area up front but it winds up wasting less memory due to the use of a bitmap (one bit per block) instead of a linked list of nodes. The use of a radix tree instead of a sequential list gives us nearly O(1) performance no matter how fragmented the tree becomes. No 4.X, não usamos uma lista sequencial. Em vez disto, usamos uma árvore raiz e bitmaps de blocos de swap em vez de lista de nós variáveis. Aceitamos o sucesso de pré-alocar todos os bitmaps necessários para toda a área de swap na frente, mas acaba desperdiçando menos memória devido ao uso de um bitmap (um bit por bloco) em vez de uma lista encadeada de nós. O uso de uma árvore raiz em vez de uma lista sequencial nos dá quase o desempenho O(1), não importa o quão fragmentada a árvore se torne.
How is the separation of clean and dirty (inactive) pages related to the situation where you see low cache queue counts and high active queue counts in <command>systat -vm</command>? Do the systat stats roll the active and dirty pages together for the active queue count? Como a separação de páginas limpas e sujas (inativas) está relacionada à situação em que você vê baixas contagens de filas de cache e altas contagens de filas ativas no <command>systat -vm</command>? As estatísticas do systat rolam as páginas ativa e inativas juntas para a contagem de filas ativas?
I do not get the following: Eu não entendo o seguinte:
It is important to note that the FreeBSD VM system attempts to separate clean and dirty pages for the express reason of avoiding unnecessary flushes of dirty pages (which eats I/O bandwidth), nor does it move pages between the various page queues gratuitously when the memory subsystem is not being stressed. This is why you will see some systems with very low cache queue counts and high active queue counts when doing a <command>systat -vm</command> command. É importante notar que o sistema de VM do FreeBSD tenta separar páginas limpas e inativas pelo motivo expresso de evitar descargas desnecessárias de páginas inativas (que consomem largura de banda de I/O), nem mover páginas entre as várias filas de páginas gratuitamente quando subsistema de memória não está sendo estressado. É por itso que você verá alguns sistemas com contagens de fila de cache muito baixas e contagens de fila ativa altas ao executar um comando <command>systat -vm</command>.
Yes, that is confusing. The relationship is <quote>goal</quote> verses <quote>reality</quote>. Our goal is to separate the pages but the reality is that if we are not in a memory crunch, we do not really have to. Sim, isto é confuso. A relação é <quote>meta</quote> versus <quote>realidade</quote>. Nosso objetivo é separar as páginas, mas a realidade é que, se não estamos em uma crise de memória, não precisamos realmente fazer isso.
What this means is that FreeBSD will not try very hard to separate out dirty pages (inactive queue) from clean pages (cache queue) when the system is not being stressed, nor will it try to deactivate pages (active queue -&gt; inactive queue) when the system is not being stressed, even if they are not being used. O que isto significa é que o FreeBSD não tentará muito separar páginas sujas (fila inativa) de páginas limpas (fila de cache) quando o sistema não está sendo estressado, nem vai tentar desativar páginas (fila ativa -&gt; fila inativa) quando o sistema não está sendo estressado, mesmo que não estejam sendo usados.

Loading…

New source string a year ago
Browse all component changes

Glossary

English Portuguese (Brazil)
No related strings found in the glossary.

Source information

Source string comment
(itstool) path: sect1/para
Source string location
article.translate.xml:598
String age
a year ago
Source string age
a year ago
Translation file
articles/pt_BR/vm-design.po, string 73